Role of Transposon-Derived Small RNAs in the Interplay between Genomes and Parasitic DNA in Rice

نویسندگان

  • Misuzu Nosaka
  • Jun-Ichi Itoh
  • Yasuo Nagato
  • Akemi Ono
  • Aiko Ishiwata
  • Yutaka Sato
چکیده

RNA silencing is a defense system against "genomic parasites" such as transposable elements (TE), which are potentially harmful to host genomes. In plants, transcripts from TEs induce production of double-stranded RNAs (dsRNAs) and are processed into small RNAs (small interfering RNAs, siRNAs) that suppress TEs by RNA-directed DNA methylation. Thus, the majority of TEs are epigenetically silenced. On the other hand, most of the eukaryotic genome is composed of TEs and their remnants, suggesting that TEs have evolved countermeasures against host-mediated silencing. Under some circumstances, TEs can become active and increase in copy number. Knowledge is accumulating on the mechanisms of TE silencing by the host; however, the mechanisms by which TEs counteract silencing are poorly understood. Here, we show that a class of TEs in rice produces a microRNA (miRNA) to suppress host silencing. Members of the microRNA820 (miR820) gene family are located within CACTA DNA transposons in rice and target a de novo DNA methyltransferase gene, OsDRM2, one of the components of epigenetic silencing. We confirmed that miR820 negatively regulates the expression of OsDRM2. In addition, we found that expression levels of various TEs are increased quite sensitively in response to decreased OsDRM2 expression and DNA methylation at TE loci. Furthermore, we found that the nucleotide sequence of miR820 and its recognition site within the target gene in some Oryza species have co-evolved to maintain their base-pairing ability. The co-evolution of these sequences provides evidence for the functionality of this regulation. Our results demonstrate how parasitic elements in the genome escape the host's defense machinery. Furthermore, our analysis of the regulation of OsDRM2 by miR820 sheds light on the action of transposon-derived small RNAs, not only as a defense mechanism for host genomes but also as a regulator of interactions between hosts and their parasitic elements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small RNAs Originated from Pseudogenes: cis- or trans-Acting?

Pseudogenes are significant components of eukaryotic genomes, and some have acquired novel regulatory roles. To date, no study has characterized rice pseudogenes systematically or addressed their impact on the structure and function of the rice genome. In this genome-wide study, we have identified 11,956 non-transposon-related rice pseudogenes, most of which are from gene duplications. About 12...

متن کامل

Conserved themes in small-RNA-mediated transposon control.

Eukaryotes are engaged in a constant struggle against transposable elements, which have invaded and profoundly shaped their genomes. Over the past decade, a growing body of evidence has pointed to a role for small RNAs in transposon defense. Although the strategies used in different organisms vary in their details, they have strikingly similar general properties. Basically, all mechanisms consi...

متن کامل

Cloning of novel repeat-associated small RNAs derived from hairpin precursors in Oryza sativa.

Plant small non-coding RNAs including microRNAs (miRNAs), small interfering RNAs (siRNAs) and trans-acting siRNAs, play important roles in modulating gene expression in cells. Here we isolated 21 novel endogenous small RNA molecules, ranging from 18 to 24 nucleotides, in Oryza sativa that can be mapped to 111 hairpin precursors. Further analysis indicated that most of these hairpin sequences or...

متن کامل

Small interfering RNA; principles, applications and challenges--

Gene silencing using RNAi (RNA interference), has recently been used as a successful laboratory technique in determining the function and control of gene expression and provides a wide range of applications in molecular biology and gene therapy. RNAi is a method of suppressing gene expression. In this direction, a single-stranded RNA molecule of about 21–23 nucleotides, called siRNA (small inte...

متن کامل

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012